European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* 

**COST Action TD1105** 

WGs Meeting, Belgrade, 13 - 14 October 2015

organized by VINCA Institute and co-organized by Public Health Institute of Belgrade

hosted by Faculty of Mechanical Engineering, University of Belgrade

Action Start date: 16/05/2012 - Action End date: 30/04/2016

Year 4: 1 July 2015 - 30 April 2016 (Ongoing Action)

## **AIR-QUALITY MODELLING AT DIFFERENT SCALES**



Camillo Silibello and many others WG Member

c.silibello@aria-net.it

**ARIANET S.r.I. Milano (Italy)** 





# Scientific context and objectives in the Action

#### □ Scientific context

Twofold potential for low-cost sensor technologies observations with respect to modelling:

- The deployment of a large amount of sensors, to monitor the ambient air in urban, road traffic, rural or remote sites, permits *to evaluate the behaviour of dispersion models in different real-world situations*.
- The integration of model results and low-cost sensor technologies observations, by means of *data assimilation/fusion techniques*, permits to obtain more realistic air quality maps and to better estimate the exposure of population.

#### **Objectives in the Action**

**ARIANET S.r.I.** has developed and implemented:

- different modelling systems that allow to investigate the processes affecting the air quality from the local (street canyons) to the regional scale.
- QualeAria AQFS (http://www.qualearia.it/) provides air quality forecasts over Europe and Italy. It can be used to support the planning of experimental campaigns.

Models describing the dispersion and transport of air pollutants in the atmosphere can be distinguished on the:

### ✓ spatial scale

global; regional-to-continental; Additional Macroscale (characteristic lengths exceeding 1,000 km): air flow is mainly associated with synoptic phenomena

<u>local-to-regional;</u> Mesoscale (characteristic lengths between 1 and 1000 km): air flow depends on topographic (land/sea, mountain/valley breezes) and land use features

local;
Microscale (characteristic lengths below 1 km): air flow depends on surface characteristics (form of buildings, their orientation with regard to the wind direction,...)

temporal scale (episodic, long-term);

 treatment of the transport equations (Eulerian, Lagrangian) and various processes (chemistry, dry/wet deposition) 3 COOPERATION IN SCIENCE AND TECHNOLOGY

|                    |                                                   | Area of assessment                                                 |                                             |
|--------------------|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| Description        | Local/hotspot<br>(1-1 000 m)                      | Urban/agglomerate<br>(1–300 km)                                    | Regional<br>(25–10 000 km)                  |
| Model type         | Gaussian and non-Gaussian<br>parameterised models | Gaussian and non-Gaussian<br>parameterised models                  | Eulerian chemical transport<br>models       |
|                    | Statistical models                                | Eulerian chemical transport                                        | Lagrangian chemical models                  |
|                    | Obstacle-resolving fluid                          | models                                                             |                                             |
|                    | dynamical models                                  | Lagrangian particle models                                         |                                             |
|                    | Lagrangian particle models                        |                                                                    |                                             |
| Meteorology        | Local meteorological<br>measurements              | Mesoscale meteorological<br>models                                 | Synoptic/mesoscale<br>meteorological models |
|                    | Obstacle-resolving fluid<br>dynamical models      | Localised meteorological<br>measurements                           |                                             |
|                    | Diagnostic wind field models                      | Diagnostic wind field models                                       |                                             |
| Chemistry          | Parameterised or none                             | Ranging from none to<br>comprehensive, depending<br>on application | Comprehensive                               |
| Emission modelling | Bottom-up traffic emissions                       | Bottom-up and/or top-down<br>emission modelling                    | Top-down emission modelling                 |
|                    | Source-specific emissions                         |                                                                    | Emission process models                     |
|                    |                                                   | Emission process models                                            | -                                           |

The application of models under the European Union's Air Quality Directive: A technical reference guide. EEA Technical report No 10/2011.

Integrated modelling for air quality assessment



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Natural emissions for CTM applications: VOCs from vegetation





**Regional Scale** 

BD0

#### Natural emissions for CTM applications

### NO emission rates from soils (1 week average)



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

**Regional Scale** 

#### Natural emissions for CTM applications

### NH<sub>3</sub> emission rates from vegetation and soils (1 week average)



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

**Regional Scale** 

#### Natural emissions for CTM applications

### Impact on PM<sub>2.5</sub> concentrations (1 week average)

Min = -8.34400e - 006 - Max = 4.108 [ug/m3]

Min = -0.0007119 - Max = 2.537 [ug/m3]



#### Chemical Weather Forecast over Europe and Italy (QualeAria)

- Meteorological downscaling & air quality forecast
- Built from experience gained in: national project MINNI, EU research projects FUMAPEX and MEGAPOLI, COST Action ES0602-Chemical Weather
- Operational at ARIANET since 2007, continuously maintained and improved
- Results available on the web: http://www.qualearia.it/
- Daily data provided as boundary conditions to regional/urban forecast systems
- Accumulated data bases for off-line studies



#### 5 days forecast

2 nested domains **48 km** and **12 km** horizontal resolution (two-way nesting) **16 vertical layers** up to 10000 m.

#### **Boundary conditions:**

GFS, United States weather service (NCEP) Global Air Quality forecast MACC-Copernicus (through *Forschungszentrum Jülich* data server)

#### ROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### **Regional Scale**

#### Regional AQF and NRT systems based on ARIANET tools/data (BC)



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Urban Air Quality assessment: Naples (Southern Italy) case study

Comparison of modelled and observed PM<sub>10</sub> concentrations [µg/m<sup>3</sup>]



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### **Data fusion & assimilation**

Rome urban area January 2012 - PM<sub>2.5</sub> Monthly averages [µg m<sup>-3</sup>]



The Lombardy Environmental Protection Agency uses past (yesterday) predicted concentration fields and observations to produce Near Real Time (NRT) air quality maps



51.7

### EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### **Forecast correction (Kalman filtering)**



Bias-adjustment techniques, using recent past forecasts and observations, can be effectively applied to remove the systematic errors in predictions and improve the accuracy of air quality forecast systems (AQFS).

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Source Apportionment: NO<sub>2</sub> contribution %







#### Road traffic models



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### Impact Assessment: Rio de Janeiro road traffic emissions



#### **Time modulation**





Emergency response system coupled with QualeAria (NRT and 48 h forecast)

> SO<sub>2</sub> Maximum hourly concentrations [µg/m<sup>3</sup>] Limit value 350 µg/m<sup>3</sup>





**Normal management** 



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Impact Assessment: Fushe Kruje (Albania) cement factory expansion



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### Environmental impact of a new highway in Georgia



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Micro scale simulation: flow







Micro scale simulation: concentration





**Obstacles** 



# **Research Facilities** available for ARIANET

#### □ Software modules

Developed by ARIANET and ARIA Technologies and public available:

- Traffic assignment: CARUSO;
- Emissions: COPERT, TREFIC (from road traffic), CollectER (database CORINAIR methodology), EMMA (prepare input for dispersion models from inventories); EmEx (inventory exploratory);
- Meteorology: prognostic models (RAMS, WRF, MERCURE), diagnostic models (SWIFT/MINERVE, CALMET), pre-processors (SURF*Pro*, LAPS, UPP)
- Dispersion models: Gaussian (IMPACT, AERMOD, CALPUFF, OCD), Lagrangian particle (SPRAY), Chemical Transport (FARM, CHIMERE), CFD/microscale (FDS-SMV, ENVI-Met, MSS)
- Visualization tools: SAVI3D, AVISU, ...

#### □ HW facilities

2 Servers HPC Cluster (Intel/AMD Opteron Linux with 64 cores; Intel/AMD 2U QUAD OPTERON with 48 cores; + other devices (servers, PCs, ...)

# Suggested Priorities and R&I Needs for future research

- ✓ QualeAria AQFS is moving to ENEA HPC facilities. An improvement of the horizontal resolution is foreseen for the European and Italian domains;
- ✓ Application of "urban canopy models" (CFD, Lagrangian particle, LUR, …) to test their capability to simulate air quality within street canyons with a reasonable computational effort (comparison with low-cost sensors data);
- Urban canopy meteorological models (possible coupling of meteorological and transport/dispersion models)
- ✓ Local scale chemistry (e.g. NO to  $NO_2$  conversion -EURO6 vehicles-, ...)
- ✓ Low-cost sensors measuring tracers of specific sources may help to evaluate local/hotspot models, to identify uncertainties (flows, emissions) and improve models capabilities (emergency response, accidental releases, ...)
- ✓ further tests and refinements of data fusion/assimilation techniques, also on urban & local scales, including data from distributed low-cost sensors
- ✓ improving source attribution methods at different scales, combining proper models and observational data

# **CONCLUSIONS**

### **Main Achievements**

- No single modelling approach to face with different air quality issues
- Air Quality Models of Different Complexities are used in many realworld operational and policy applications by/with public bodies and industries
- Different input data according to models requirements and complexities
- Data assimilation techniques:
  - lead to significant improvements in the geographical mapping of ٠ the pollutants and in the estimation of the health risk,
  - help to identify possible sources of uncertainties in model results and often highlight errors in observations 26 COOPERATION IN SCIENCE AND TECHNOLOGY

# Thank you for your attention !



